How to average measurements from ground-based radiometers

NDACC Microwave Workshop 2012

Ole Martin Christensen Departement of Earth and Space Sciences Chalmers University of Technology

- 2 Time series inversion -a simulated case
- 3 Retrieval matrices
- 4 Results from OSO

同 ト イ ヨ ト イ ヨ ト

How long should we average spectra?

• How long should we average spectra?

- ∢ ≣ ▶

How long should we average spectra?

- How long should we average spectra?
- A day?

How long should we average spectra?

- How long should we average spectra?
- A day?
- A week?

How long should we average spectra?

- How long should we average spectra?
- A day?
- A week?
- This affects the retrieval in a nonlinear way

How long should we average spectra?

- How long should we average spectra?
- A day?
- A week?
- This affects the retrieval in a nonlinear way

Averaging spectra is not the same as averaging profiles!

Expanding the retrievals into the temporal dimension

• Retrievals perfomed on single spectrum

 $\mathbf{y} = \mathbf{K}\mathbf{x}$

Expanding the retrievals into the temporal dimension

• Retrievals perfomed on single spectrum

 $\mathbf{y} = \mathbf{K}\mathbf{x}$

Expanding the retrievals into the temporal dimension

• Retrievals perfomed on single spectrum

 $\mathbf{y} = \mathbf{K}\mathbf{x}$

 But we can do several spectra simultaniously

$$\left(\begin{array}{c} \mathbf{y}_1\\ \mathbf{y}_2\\ \vdots\\ \vdots\\ \mathbf{y}_N \end{array}\right) = \left(\begin{array}{ccc} \mathbf{K}^1 & \mathbf{0} & \mathbf{0}\\ \mathbf{0} & \ddots & \mathbf{0}\\ \mathbf{0} & \mathbf{0} & \mathbf{K}^N \end{array}\right) \left(\begin{array}{c} \mathbf{x}_1\\ \mathbf{x}_2\\ \vdots\\ \vdots\\ \mathbf{x}_N \end{array}\right)$$

Expanding the retrievals into the temporal dimension

• Retrievals perfomed on single spectrum

 $\mathbf{y} = \mathbf{K}\mathbf{x}$

 But we can do several spectra simultaniously

$$\left(\begin{array}{c} \mathbf{y}_1\\ \mathbf{y}_2\\ \vdots\\ \mathbf{y}_N\\ \mathbf{y}_N \end{array}\right) = \left(\begin{array}{ccc} \mathbf{K}^1 & \mathbf{0} & \mathbf{0}\\ \mathbf{0} & \ddots & \mathbf{0}\\ \mathbf{0} & \mathbf{0} & \mathbf{K}^N \end{array}\right) \left(\begin{array}{c} \mathbf{x}_1\\ \mathbf{x}_2\\ \vdots\\ \mathbf{x}_N\\ \mathbf{x}_N \end{array}\right)$$

A 10

A simulation of an abrupt change in the atmosphere

- To test the properties of the retrieval a simulation i run.
- Atmosphere is constant equal to a priori until the 120th hour, when it is doubled.

$$\hat{\mathbf{x}} = \mathbf{x}_{\mathbf{a}} + (\mathbf{K}^{T} \mathbf{S}_{\epsilon}^{-1} \mathbf{K} + \mathbf{S}_{\mathbf{a}}^{-1})^{-1} \mathbf{K}^{T} \mathbf{S}_{\epsilon}^{-1} (\mathbf{y} - \mathbf{K} \mathbf{x}_{\mathbf{a}})$$

Instrument

 $\nu_0{=}22$ GHz, Bandwidth = 1 GHz, $\Delta\nu$ = 25KHz, 83 Channels, Noise T = 100 K, Opacity 0.5, Integration time 3 hours, Calibration time 50%

・ 同 ト ・ ヨ ト ・ ヨ

NDACC Microwave Workshop 2012 How to average measurements from ground-based radiometers

A simulation of an abrupt change in the atmosphere

- To test the properties of the retrieval a simulation i run.
- Atmosphere is constant equal to a priori until the 120th hour, when it is doubled.

$$\hat{\mathbf{x}} = \mathbf{x}_{\mathbf{a}} + (\mathbf{K}^{T} \mathbf{S}_{\epsilon}^{-1} \mathbf{K} + \mathbf{S}_{\mathbf{a}}^{-1})^{-1} \mathbf{K}^{T} \mathbf{S}_{\epsilon}^{-1} (\mathbf{y} - \mathbf{K} \mathbf{x}_{\mathbf{a}})$$

Instrument

 $\nu_0{=}22$ GHz, Bandwidth = 1 GHz, $\Delta\nu$ = 25KHz, 83 Channels, Noise T = 100 K, Opacity 0.5, Integration time 3 hours, Calibration time 50%

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

1D inversion

A simulation of an abrupt change in the atmosphere

- To test the properties of the retrieval a simulation i run.
- Atmosphere is constant equal to a priori until the 120th hour, when it is doubled.

$$\hat{\mathbf{x}} = \mathbf{x}_{\mathbf{a}} + (\mathbf{K}^{T} \mathbf{S}_{\epsilon}^{-1} \mathbf{K} + \mathbf{S}_{\mathbf{a}}^{-1})^{-1} \mathbf{K}^{T} \mathbf{S}_{\epsilon}^{-1} (\mathbf{y} - \mathbf{K} \mathbf{x}_{\mathbf{a}})$$

Instrument

 $\nu_0{=}22$ GHz, Bandwidth = 1 GHz, $\Delta\nu$ = 25KHz, 83 Channels, Noise T = 100 K, Opacity 0.5, Integration time 3 hours, Calibration time 50%

48 h average of spectra

- 4 同 ト 4 ヨ ト 4 ヨ ト

A simulation of an abrupt change in the atmosphere

- To test the properties of the retrieval a simulation i run.
- Atmosphere is constant equal to a priori until the 120th hour, when it is doubled.

$$\hat{\mathbf{x}} = \mathbf{x}_{\mathbf{a}} + (\mathbf{K}^{T} \mathbf{S}_{\epsilon}^{-1} \mathbf{K} + \mathbf{S}_{\mathbf{a}}^{-1})^{-1} \mathbf{K}^{T} \mathbf{S}_{\epsilon}^{-1} (\mathbf{y} - \mathbf{K} \mathbf{x}_{\mathbf{a}})$$

Instrument

 $\nu_0{=}22$ GHz, Bandwidth = 1 GHz, $\Delta\nu$ = 25KHz, 83 Channels, Noise T = 100 K, Opacity 0.5, Integration time 3 hours, Calibration time 50%

| 4 同 1 4 三 1 4 三 1

Time series inversion

Specifying the a priori uncertainty

• We need to specify the 2d-a priori covariance matrix.

- ∢ ≣ ▶

Specifying the a priori uncertainty

Element in Sa

Specifying the a priori uncertainty

Element in Sa

< E

Specifying the a priori uncertainty

Element in Sa

< E

Specifying the a priori uncertainty

• We need to specify the 2d-a priori covariance matrix.

- Vertical elements
- Temporal elements

< ∃ >

Specifying the a priori uncertainty

• We need to specify the 2d-a priori covariance matrix.

- Vertical elements
- Temporal elements

- ∢ ≣ ▶

Specifying the a priori uncertainty

Temporal elements

Hour

/□ ▶ < 글 ▶ < 글

Specifying the a priori uncertainty

It is the temporal correlation that allows us to improve the retrievals!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Averaging kernels

• The averaging kernels become 2D.

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}^{1,1} & \mathbf{A}^{1,2} & \cdots & \mathbf{A}^{1,N} \\ \mathbf{A}^{2,1} & \mathbf{A}^{2,2} & \cdots & \mathbf{A}^{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}^{N,1} & \mathbf{A}^{N,2} & \cdots & \mathbf{A}^{N,N} \end{pmatrix}$$

Averaging kernels

• The averaging kernels become 2D.

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}^{1,1} & \mathbf{A}^{1,2} & \cdots & \mathbf{A}^{1,N} \\ \mathbf{A}^{2,1} & \mathbf{A}^{2,2} & \cdots & \mathbf{A}^{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}^{N,1} & \mathbf{A}^{N,2} & \cdots & \mathbf{A}^{N,N} \end{pmatrix}$$

• The temporal averaging kernels describe the averaging at each altitude.

Averaging kernels

• The averaging kernels become 2D.

$$\mathbf{A} = \left(\begin{array}{ccccc} \mathbf{A}^{1,1} & \mathbf{A}^{1,2} & \cdots & \mathbf{A}^{1,N} \\ \mathbf{A}^{2,1} & \mathbf{A}^{2,2} & \cdots & \mathbf{A}^{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}^{N,1} & \mathbf{A}^{N,2} & \cdots & \mathbf{A}^{N,N} \end{array} \right)$$

 The temporal averaging kernels describe the averaging at each altitude.

Retrievals from OSO

- **→** → **→**

э

Retrievals from OSO

76 km

< 🗇 🕨

→ 3 → < 3</p>

Temporal Averaging kernels from OSO

э

Temporal Averaging kernels from OSO

- ● ● ●

э

э

Summary and conclusions

- Retrievals were expanded into the temporal dimension.
- Allows for different temporal resolutions at different altitudes.
- Takes into account noise in neighbouring measurements

★ ∃ → ★ ∃

Summary and conclusions

- Retrievals were expanded into the temporal dimension.
- Allows for different temporal resolutions at different altitudes.
- Takes into account noise in neighbouring measurements

Ideas

The method also allows for seamless optimal interpolation for filling data gaps or regridding the data.

Can be used to retrieve instrumental data like baselines.

伺 ト イヨト イヨト