## Water vapour profiles by ground-based FTIR Spectroscopy:

## study for an optimised retrieval and its validation

by M. Schneider, F. Hase, and T. Blumenstock

- 1. Inversion on a logarithmic scale, why ?
- 2. Error characterization (... towards an optimal strategy for UT  $H_2O$  retrieval)
- 3. 7-year record of water vapour above Izaña observatory
- 4. Summary and outlook

published in ACP:Atmos. Chem. Phys.,6, 811-830, 2006

1. Inversion on a logarithmic scale, why?

Examination of a-priori distribution.  $\chi^2$  test checks for a normal distribution:  $\chi^2 = (x - x_a)^T S_a^{-1} (x - x_a)$ 



1. Inversion on a logarithmic scale, why?

The cost function

$$\sigma^{-2}(y - Kx)^{T}(y - Kx) + (x - x_{a})^{T}S_{a}^{-1}(x - x_{a})$$

is only correctly posted if state vector is transformed on a logarithmic scale !

On a linear scale a wrong a-priori distribution is assumed ! Then the term

 $(x-x_a)^{\mathrm{T}}\mathbf{S}_{\mathrm{a}}^{-1}(x-x_a)$ 

provides for an overestimation of small x and an underestimation of large x !

Error estimation is performed by a "Monte Carlo" method. Analytic error estimation like proposed by Rodgers (1990) is not appropriate due to nonlinearities.

- 1. Forward calculation of assumed H<sub>2</sub>O profile
- 2. Introducing of errors (measurement noise, temperature profile, ILS, spectroscopic parameter, ...)
- 3. Inversion of the simulated spectra

This "Monte Carlo" error estimation works only if we apply a large ensemble of H2O profiles, which obey the real H<sub>2</sub>O statistics ! We apply 500 ptu-sonde measurements of the years 1999 and 2000.

Errors are commonly presented as a mean (systematic error) and variance (random error).

Here we present them in a more general manner: by least squares fits

 $\rightarrow$  difference of regression curve from diagonal: offset + slope of regression line (mean + sensitivity as systematic error)

 $\rightarrow$  scattering around the regression curve (residual variance as random error):

$$\frac{\sigma_{\varepsilon_reg}}{\sigma_{\widehat{x}}} = \sqrt{1 - \rho^2}$$

#### Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

2. Error estimation

#### Error estimation by means of linear least squares fit

Why? — there are two kind of systematic errors: 1. mean error (bias)

2. sensitivity error(slope≠1 or no linear correlation)



In the following the errors of lower, middle, and upper tropospheric  $H_2O$  are

1. estimated by Monte Carlo simulations

and

2. validated by comparing  $H_2O$  from FTIR measurements with daily ptu-sondes

### **Estimation** of total FTIR error (2.3-3.3km):



**FTIR vs. ptu-sondes** at 2.3-3.3km. Problem: detection of different regions (FTIR: boundary layer; sonde: free troposphere)



### **Estimation** of total FTIR error (4.3-6.4km):



## FTIR vs. ptu-sonde at 4.3-6.4km:







NDACC H2O workshop, Bern, July 2006

# FTIR vs. ptu-sonde at 7.6-10.0km:



Can we reduce the error of the retrieved UT  $H_2O$  amount ?

<u>Case A</u>: Yes, when absorption lines are unsaturated !



2. Error estimations

<u>Upper troposphere (Case A)</u>: **Estimation** of total FTIR error for LT slant below 10 x 10<sup>21</sup>cm<sup>-2</sup> (7.6-10.0km):

linear scale

logarithmic scale





<u>Upper troposphere (Case A)</u>: **Estimation** of total FTIR error for LT slant below 5 x 10<sup>21</sup>cm<sup>-2</sup> (8.8-11.2km):

linear scale

logarithmic scale



#### <u>Upper troposphere (Case A)</u>: **FTIR vs. ptu-sonde** at 8.8-11.2km for LT slant below 5 x $10^{21}$ cm<sup>-1</sup>: linear scale logarithmic scale tropopause (8.8-11.2km) 0,6-0.6 Ο $(LT-slant < 5x10^{21}/cm^{2})$ retrieved part. col. [10<sup>21</sup>/cm<sup>-2</sup>] and S/N > 200) $\bigcirc$ 0,4 0,4 6 $\bigcirc$ 0,2 0,2 $\cap$



Can we reduce the error of the retrieved UT  $H_2O$  amount ?

Case B: Yes, when strong and moderately strong lines are fitted simultaneously !



<u>Upper troposphere (Case B)</u>: **FTIR vs. ptu-sonde** at 7.6-10.0km (LT slant below 25 x  $10^{21}$ cm<sup>-2</sup>):

strong lines

strong and moderately strong lines



<u>Upper troposphere (Case B)</u>: **FTIR vs. ptu-sonde** at 10.0-12.4km (LT slant below 5 x  $10^{21}$  cm<sup>-2</sup>):

strong lines strong and moderately strong lines 0,2 0,2- $\bigcirc$  $\bigcirc$ 0 Ο 0,1 Ο 0  $\bigcirc$  $\bigcirc$ Ο  $\bigcirc$ 8



Recipe for retrieval of upper tropospheric  $H_2O$ :

- Only retrieval on a logarithmic scale provides for a correctly posted cost function  $\rightarrow$  this reduces the systematic errors if compared to a retrieval on linear scale. It leads to consistent time series and a good sensitivity for UT H<sub>2</sub>O amounts
- Simultaneous fit of strong and moderately strong lines provides for best exploitation of spectra → makes continuous observation of UT H2O feasible
- Most important errors are: smoothing error, ILS, line parameter, and temperature profile



#### Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

NDACC H2O workshop, Bern, July 2006

4. Summary and outlook

Our study shows the following:

- 1. FTIR well-suited for continuous monitoring of lower and middle tropospheric  $H_2O$  amounts.
- 2. For upper tropospheric  $H_2O$  amounts a continuous monitoring is tricky, but feasible by FTIR, if:

A: the inversion is perform on a log-scale

B: strong and moderately strong lines are fitted simultaneously

4. Summary and outlook

Future work:

- 1. Produce continuous time series of UT water vapour from many historic FTIR measurements (e.g. measurements at Jungfraujoch or Kitt Peak could produce unique continuous 20-year records !)
- 2. Further improvements are still possible for dryer or higher situated sites: we could apply stronger H<sub>2</sub>O lines → improved sensitivity at higher altitudes. Detection of lower stratospheric water vapour variability from Jungfraujoch ?
  - 3. Retrieval of HDO/ $H_2O$

#### Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

### Thank You !!!!!!!!

Summary of differences between FTIR and ptu sonde data (sum of errors of sonde and FTIR). Theoretical estimations of FTIR errors are in brackets:

linear scale:

|                           | total  | 2.3-3.3km | 4.3-6.4km | 7.6-10.0km | 8.8-11.2km |
|---------------------------|--------|-----------|-----------|------------|------------|
| random                    | 25 (4) | 40 (21)   | 32 (24)   | 54 (50)    | 56 (47)    |
| systematic <sup>(A)</sup> | +6 (0) | +3 (-3)   | -4 (-6)   | -40 (-31)  | -47 (-38)  |

#### logarithmic scale:

|                          | total   | 2.3-3.3km | 4.3-6.4km | 7.6-10.0km | 8.8-11.2km |
|--------------------------|---------|-----------|-----------|------------|------------|
| random                   | 25 (4)  | 47 (22)   | 33 (24)   | 58 (49)    | 51 (42)    |
| sytematic <sup>(A)</sup> | +6 (-1) | -4 (-4)   | +1 (-1)   | +2 (-23)   | -10 (-33)  |

(A): systematic spectroscopic line parameter errors are not considered

<u>Upper troposphere (Case B)</u>: **Estimation** of total FTIR error at 7.6-10.0km (LT slant below 25 x  $10^{21}$ cm<sup>-2</sup>):

strong lines

strong and moderately strong lines

<u>Upper troposphere (Case B)</u>: Estimation of total FTIR error at 7.6-10.0km (LT slant below 25 x  $10^{21}$  cm<sup>-1</sup>):

strong lines

strong and moderately strong lines

What about the averaging kernels ?

3. Vertical resolution

In the case of water vapour the averaging kernels only contain limited information about the sensitivity of the measurements.

Reason:

- 1. Non-linearities (kernels depend strongly on actual  $H_2O$  profile)
- 2. variability of  $H_2O$  decreases with height by 4 orders of magnitude  $\rightarrow$  comparison of kernels for different heights is not straight forward !

Alternative representation of sensitivity:

Correlation matrices (correlation between original profiles and inverted profiles). The matrices give a realistic overview of the detectable atmospheric regions. Furthermore, they allow us to perform this sensitivity analysis for a realistic error scenario.

3. Vertical resolution

### **Estimation** for LT slant column below 10 x 10<sup>21</sup>cm<sup>-2</sup>:



3. Vertical resolution

#### **FTIR vs. sonde** for LT slant below 10 x 10<sup>21</sup>cm<sup>-2</sup>:



3. Vertical resolution

### **Estimation** for LT slant column below 5 x 10<sup>21</sup>cm<sup>-2</sup>:



NDACC H2O workshop, Bern, July 2006

## **FTIR vs. sonde** profiles for LT slant < 5 x 10<sup>21</sup> cm<sup>-2</sup>:



#### Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Slide from talk "Ground-based remote sensing of tropospheric HDO/H2O ratio profiles"

### Empirical validation of H<sub>2</sub>O profiles: ptu-sonde vs. FTIR:



Inter-species constraint not only improves quality of  $\delta D$ profiles but also quality of H<sub>2</sub>O profile:

H<sub>2</sub>O retrieval benefits from additional information present in HDO lines

Detection of UT/LS H<sub>2</sub>O with the proposed lines ?

For a definitive conclusion we need a larger ensemble of compared profiles (the correlation shown here bases on only 7 profiles) !

3. Validation of FTIR profiles with ptu-sondes

FTIR versus sonde profiles for all measurement days:

![](_page_35_Figure_3.jpeg)

Corresponding theoretical sensitivity assessment (whole ensemble):

![](_page_36_Figure_3.jpeg)

NDACC H2O workshop, Bern, July 2006

Corresponding theoretical sensitivity assessment (LT slant  $< 5 \times 10^{21} \text{cm}^{-2}$ ):

![](_page_37_Figure_3.jpeg)

#### Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Slide from talk "Ground-based remote sensing of tropospheric HDO/H2O ratio profiles"

### Empirical validation of H<sub>2</sub>O profiles: ptu-sonde vs. FTIR:

![](_page_38_Figure_3.jpeg)

Inter-species constraint not only improves quality of  $\delta D$ profiles but also quality of H<sub>2</sub>O profile:

H<sub>2</sub>O retrieval benefits from additional information present in HDO lines

Detection of UT/LS H<sub>2</sub>O with the proposed lines ?

For a definitive conclusion we need a larger ensemble of compared profiles (the correlation shown here bases on only 7 profiles) !

#### Whole ensemble:

![](_page_39_Figure_3.jpeg)

#### **Forschungszentrum Karlsruhe** in der Helmholtz-Gemeinschaft

2. Error estimation

#### Error estimation by means of linear least squares fit

Why? — there are two kind of systematic errors: 1. mean error (bias)

2. sensitivity error(slope≠1)

![](_page_40_Figure_5.jpeg)

Slant column of lower troposphere (2.3-4.3km) below  $10 \times 10^{21} \text{cm}^{-2}$ :

![](_page_41_Figure_3.jpeg)

Summary of random error component of smoothing + measurement noise error:

![](_page_42_Figure_3.jpeg)

Summary of random error component parameter error (whole ensemble):

![](_page_43_Figure_3.jpeg)

Summary of random error component parameter error (LT slant below  $10 \ge 10^{21} \text{cm}^{-1}$ ):

![](_page_44_Figure_3.jpeg)

Summary of random error component parameter error (LT slant below 5 x  $10^{21}$ cm<sup>-1</sup>

![](_page_45_Figure_3.jpeg)