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We record two signals @ Raman A of H,O Su(@) =ky oy ny(2) /22
and N, (or O,) Sn(@) =ky oy ny(2) 1 22

From the definition of Mixing Ratio and from the ratio of the signals
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we obtain the measurement of the Mixing Ratio
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The constant C is estimated through calibration using, e.g., co-located radiosoundings
at a selected altitude z,
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System design

TRANSMITTER

Laser Nd:YAG Continuum Powerlite 8010
Energy: 400 m] @ 355 nm, 180 m] @ 532 nm,
Pulse repetition rate: 10 Hz  Pulse duration: 7 ns
Beam divergences: 0.2 mrad (with 4x beam expanders)

RECEIVER

eCollector 1: Single newtonian F/3 telescope (nighttime & daytime)

Diameter:  0.15m

Field of view:1.8 mrad

for lower range elastic baksc.
eCollector 2: Single newtonian F/3 telescope

Diameter: 0.3 m

Field of view: 0.9 mrad (nighttime), 0.45 mrad (daytime)

for lower range Raman backsc. and middle range elastic backsc.
oCollector 3:  Array of 9 newtonian F/3 telescopes (nighttime)

Diameter: 0.5 m each (total collection area ~1.75 m?)

Field of view:0.6 mrad

for upper range Raman backsc. and upper range elastic backsc.







System design

Signal modulation system 3 synchronized choppers to prevent blinding of :
e upper and middle range elastic backsc. channels
e upper range Raman backsc. channels

Raman wavelength Interferential Filter bandwidth (FWHM)
e WV Raman:  0.38 nm (daytime/nighttime)
e N2 Raman: 5nm (nighttime)
0.33 nm (daytime)
Transportable system (installed in 2 containers transportable by trucks)

Acquisition resolution Usual data elaboration resolution
e in altitude: 75 m e in altitude: 75m  up to 6 km

525m above 6 km (7-point smooth.)
ein time: 1 min e in time: 10 — 30 min (mostly 20 min)

Calibration / validation through radiosonde of Meteorological Service of Italian M.A.
in Pratica di Mare, 25 km S.W. of lidar station

Atmospheric Quantities
® Vertical profiles of water vapor from ~75 m up to the upper troposphere
e Vertical profiles of temperature in the upper stratosphere and mesosphere
e Vertical profiles of aerosol from ~200 m up to the stratosphere
e Cloud location
e Boundary Layer structure and top



System design




WV profiles in the lower troposphere

RDS of Pratica di Mare, 25 km S.W. of the lidar station (23:02 UT)
Lidar, lower channels (20-min integration)
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WYV profiles in the upper troposphere

RDS of Pratica di Mare (23:02 UT)
Lidar, upper channels (20-min integration)
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WV profiles in the upper/lower troposphere

Lidar (upper channels)
Lidar (lower channels)
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WV measurements in the upper/lower troposphere
Log contour of merged profiles (20-min integration; matching at 4 km)
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Daytime profiles

——— RDS of Pratica di Mare, (7:00 LT)

Lidar lower channels (20-min integration)
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Lower range channels; Clouds above 4-3 km

Daytime-nigthtime measurements

(30 min integration; 525-m smoothing above 2 km)
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Statistical uncertainties

19 Jan 2006; 20-min integration
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Statistical uncertainties

19 Jan 2006; 20-min integration
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Statistical uncertainties

Performance improvement in high humidity conditions

RDS of Pratica di Mare, 25 km S.W. of the lidar station (23:09 UT)
Lidar, lower channels (20-min integration)
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Statistical uncertainties
Performance improvement of in high humidity conditions

20-min integration
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Statistical uncertainties

Performance improvement in high humidity conditions

17 moy 2006 15 37:00—-01:00:477 UT
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Systematic effects

% Calibration
» Calibration by fitting lidar profiles to radiosonde profile (Pratica di Mare)
» Selection of best fitting altitude interval by visual and x2 comparison

> Variation in calibration constant for different lidar profiles, in periods around the
rds. launch, are found due to the spatial distance; amount of variation depending
on weather conditions

» Values associated to the apparently best fits are averaged and st.dev. computed

» Range of calibration uncertainty (= resulting st.dev.) between 2-10%, depending
on weather stability

¢+ Cloud effects

> Clouds presence contaminates WV measurement due to liquid water Raman
spectrum partly covering the WV spectrum

e The effect can be reduced by narrowing filter bandwidth
» No contamination for ice clouds because of displacement of ice Raman spectrum



Italian participation in

LAUNCH campaign

12 Sett- 28 Oct 2005
ITALIAN GROUPS

University of Rome

128 148 68 i (WV & aerosol Raman Lidar,Sodar, MFRSR)
' CNR-ISAC
(WV & aerosol Raman Lidar, Sodar)
University of L'Aquila
(weather forecast,lidar assimilation)
University of L'Aquila
(WV & aerosol Raman Lidar, soundings)
CNR-IMAA
(WV & aerosol Raman Lidar, soundings)
University of Basilicata
(WV & T & aerosol Raman Lidar)
University of Napoli
(WV & aerosol Raman Lidar)

L
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Univeristy of Lecce

(WV & aerosol Raman Lidar, soundings)
Enea -Lampedusa

(soundings, aereosol Lidar)



Conclusions

“» System of Rome-Tor Vergata
» Resolution

e |n altitude: 75m upto 6 km
525 m above 6 km
e INn time: 20 min
» Useful range starting from very lower layers of PBL
and extending up to upper troposphere
» Capabillity of measuring WV MR as low as 0.01 g/kg
» Errors of 20% in a 11-13 km altitude range

» Measurements possible in daytime but performance
drastically worse
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