Groundbased Microwave Activities in Bern

^b UNIVERSITÄT BERN

Alexander Haefele, Klemens Hocke, and Niklaus Kämpfer University of Bern

Outline

- GROMOS
 - Key Parameters
 - Dataset
- MIAWARA
 - The Instrument
 - Calibration
 - Spectral detection
 - Inversion
 - Datasets
 - Validation
- Diurnal Cycles in stratospheric ${\sf O}_3$ and ${\sf H}_2{\sf O}$
- SWARA: A new Instrument

GROMOS: Ground Based Millimetre Wave Ozone Spectrometer

- In operation since 1994
- Total power spectrometer: Hot Load ⇒ ambient temperature, cold load ⇒ liquid N₂
- Single sideband: Martin-Puplett interferometer
- Altitude range: 20-70 km, vertical resolution: 5-10 km
- Temporal resolution: 2 h

GROMOS Dataset

MIAWARA: Middle Atmospheric Water Vapour Radiometer

Concept: As simple as possible \Rightarrow no focussing optics.

MIAWARA: Middle Atmospheric Water Vapour Radiometer

Calibration

Hot Load: MW absorber at ambient temperature.

- Cold Load: Sky (tipping curve \Rightarrow opacity \Rightarrow sky brightness temperature)
- Balancing scheme: $\Delta T_b = \frac{S_{line} S_{ref}}{S_{hot} S_{cold}} (T_{hot} T_{cold})$
- Validation of the calibration is performed once a month:

Spectral Detection

AOS: Acousto-Optical-Spectrometer

channels: 1725 f: 1.6 - 2.6 GHz $\Delta f_{FWHM}: 1.2 \text{ MHz}$ CTS: Chirp-Transform-Spectrometer

Inversion

- Radiative transfer: ARTS
- Sensor Modelling: QPack
- Rodger's OEM algorithm: QPack

- A priori H₂O profile: US standard
- pTz profiles: ECMWF
- Observation time: AOS 4 h, CTS 24 h

Datasets

Validation

- \Rightarrow good agreement of all satellite instruments (within 10%)
- \Rightarrow a constant, systematic bias of the ground station

Validation

- \Rightarrow good agreement of all satellite instruments (within 10%)
- \Rightarrow a constant, systematic bias of the ground station
- quality assurance of level 1 data not sufficient
- a priori profile induces a dry bias

Diurnal Cycle in Stratospheric Water Vapour and Ozone

Diurnal Cycle in Stratospheric Water Vapour and Ozone

Could this be related to atmospheric tides?

Diurnal and Semidiurnal Components in Ozone

Diurnal and Semidiurnal Components in Ozone and Temperature

Temperatures:

[Keckhut et al.]

SWARA: A new Instrument

- A collaboration of the Uni Bern and the Sookmyung Women's University, Seoul
- Frontend: The same as MIAWARA
- Backend: FFT spectrometer
 - channels: 16400
 - f: 0 1 GHz
 - Δf_{FWHM} : 60 kHz
- Destination: Seoul, 37N/126E

Thank you ...