Optical Design Aspects

Axel Murk

University of Bern, Institute of Applied Physics

NDACC Workshop 2013

^b UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$

- Accuracy is often limited by baseline artifacts which are related to optical problems:
 - Standing waves or other multipath effects
 - Beam truncation
 - Frequency dependent FOV
- Pathlength modulator only randomizes these baseline, but does not remove it completely
- Ideally the optics should be designed to be free of these artifacts, but this requires detailed optical models from the feed to the last reflector

Fundamental Gaussian Beam Analysis Simple analytical approximation Neglects feed side lobes, beam aberrations, polarization, ... Not sufficient for accurate simulations You will most likely underestimate your spillover, etc...

Higher Order Gaussian Beam Analysis Better than the above, but still not the truth...

Physical Optics (PO) Analysis GRASP Software Package from www.ticra.com

Quite expensive, but good and respected industry standard Free student version with limited capabilities (max. 2 reflectors)

- Feed determines the mode composition of the quasi-optical beam 100% Gaussian would be ideal in most cases (but not all)
- ► Standard corrugated feed is ~98% Gaussian. This sound quite high, but it leaves 2% of the power in side lobes
- Ultra-Gaussian Feeds are highly preferred

MIAWARA-C Feed

- Compact Choked-Gaussian feed horn with -40dB sidelobes
- Designed by J. Teniente, Univ. Publica de Navarra
- Similar designs now used by NRL, KIT, INGV

C. Straub et al, "Optical design for a compact 22 GHz radiometer for middle atmospheric water vapor", EUCAP (2007) C. Straub et al, "MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns", Atm.Meas.Tech. 2010

STEAMR Feed

Standard Corrugated Feed

- ► Fundamental *HE*₁₁ hybrid mode
- Truncated Bessel at aperture
- Farfield sidelobes -25dB
- 98% coupling to Gaussian

'Super-Gaussian' Feeds

- Add HE₁₂ mode with correct phase [P. Cruickshank et al, IRMMW 2007]
- ► Farfield sidelobes ≤-35dB
- 99.8% coupling to Gaussian

STEAMR FPA Beam Propagation: Standard Feed

A. Murk (University of Bern, IAP)

STEAMR FPA Beam Propagation: Gaussian Feed

A. Murk (University of Bern, IAP)

- If there is a baseline problem, try to find the origin and fix it instead of trying to wobble it away.
- Beam-pattern measurements and PO simulations can help to identify problems
- Ultra-Gaussian feeds will reduce spillover and standing waves
- MPI sideband filters or diplexers can introduce significant standing waves