Development and Characterization of Microwave Calibration Targets

Axel Murk, Susanna Fernandez, Richard Wylde

University of Bern, Institute of Applied Physics Thomas Keating Ltd., UK

NDACC Workshop 2013

^b UNIVERSITÄT BERN

- Critical aspects of calibration targets
- Absorbing Materials
- Calibration target characterization
- Targets developed in collaboration with TK: CHL, ALMA, Sentinel-3, LMCL
- New developments at IAP

Requirements for Microwave Calibration Targets

- Low temperature gradients ΔT
- High coupling efficiency $\eta \ge 99.99\%$
- High emissivity $\epsilon \geq 99.99\%$
- ► Low coherent return loss S11 ≪-40dB

Requirements for Microwave Calibration Targets

- Low temperature gradients ΔT
- High coupling efficiency η ≥ 99.99%
- High emissivity $\epsilon \geq 99.99\%$
- ► Low coherent return loss S11 ≤ -60dB

Absorbing Materials

Pyramidal or convoluted polyurethane foam absorber

- e.g. Eccosorb CV (Emerson&Cuming) or EPP (Eco-Messtechnik)
- Relatively low S11 (but degraded if painted)

► Low thermal conductivity ⇒ Risk of significant temperature gradients!

Absorbing Materials

Polypropylene with carbon loading (TK)

- ► TK-RAM (pyramidal surface) or "Hiper" Cones
- Still only moderate thermal performance

Conical beam dumps in the 94GHz pulsed ESR spectrometer "HIPER" (Rev. Sci. Instr. 80, 103102, 2009)

A. Murk (University of Bern, |AP)

Calibration Targets

Absorbing Materials

Magnetically loaded Epoxy or Silicone (Eccosorb CR110, CR114 ...)

- \blacktriangleright Very lossy \Rightarrow thin absorber layer on a metal backing reduces ΔT
- Bad matching to free space \Rightarrow requires multiple reflections
- Tuned multilayer of different absorber grades can improve the matching in selected frequency bands.

Measured and predicted normal incidence S11 of a tri-layer optimized for Metop-SG frequencies 20, 30, 50–57 and 89GHz

A. Murk (University of Bern, |AP)

Calibration Targets

Window Materials and LN2

Low density and low loss foams to isolate targets

- Plastazote LD15 closed cell PE foam seems to be best
- Styrofoam quality is variable
- Emerson&Cuming PE foam Eccostock PP2 is worse

"Stabilization of the Brightness Temperature of a Calibration Warm Load for Spaceborne Microwave Radiometers," De Amici et al., IEEE TGRS vol. 45, no. 7, 2007.

LN2 Cold Loads

- Primary reference point for many instruments, but how accurate is T?
- Refractive index n = 1.2 \implies $R_{\perp} = \left(\frac{n-1}{n+1}\right)^2 = -21 \ dB$
- ► Warm bias of at least 1.8K just from LN2 reflections
- Significant standing waves, phase drifts while LN2 evaporates Solution: do not observe at normal incidence!

Temperature Gradients

- Microwave absorbers have relatively low thermal conductivity
 temperature gradients, depending on thermal environment.
- Pyramidal targets are more affected than other designs.
- Examples of a heated target for ALMA with gradients up to 5K:

A. Murk (University of Bern, IAP)

Conical Hot Load (CHL)

- Initially developed for ESA submm-wave limb sounder >300GHz
- Successfully flown on various air- and balloon-borne instruments
- Lower temperature gradients and S11 than pyramidal targets

Conical Hot and Ambient Targets for ALMA

- ► Frequency bands between 30-950 GHz
- Tuned multilayer absorber in a folded cone geometry

Conical Hot and Ambient Targets for ALMA

- ► Frequency bands between 30-950 GHz
- > Tuned multilayer absorber in a folded cone geometry

- S11 measurement with VNA
- ► Directional coupler up to 100 GHz, quasi-optics above.
- ► Test object measured at different distances d to calibrate directivity of the test setup ⇒ phase changes, fit of a circle to the complex data

S11 Test Results for Conical and Pyramidal Targets

S11 backscatter measurements for different targets

Standing Wave Baseline Ripple

 Spectroscopic baseline of different ambient temperature targets observed with a cryogenic 300 GHz receiver (MIRA, KIT).

Standing Wave Baseline Ripple

 Spectroscopic baseline of different ambient temperature targets observed with a cryogenic 300 GHz receiver (MIRA, KIT).

Low S11 is most crucial for spectroscopic observations!

Standing Wave Baseline Ripple

 Spectroscopic baseline of different ambient temperature targets observed with a cryogenic 300 GHz receiver (MIRA, KIT).

Ground Calibration Targets for SENTINEL-3 MWR

- Fixed and variable cryogenic target for 24 and 36 GHz
- Wedged blackbody for single TM polarization
- Temperature stabilized shaped reflector minimizes IR loading

Wedged -30°C Target for GROMOS-C

- Peltier coolers, Aerogel isolation, normal pressure
- New Eccosorb MMI absorber for MM-waves (1mm thick)

Wedged -30°C Target for GROMOS-C

- Peltier coolers, Aerogel isolation, normal pressure
- New Eccosorb MMI absorber for MM-waves (1mm thick)

COMSOL Multiphysis FEM Simultion: Convective Air Flow

Wedged -30°C Target for GROMOS-C

- > Peltier coolers, Aerogel isolation, normal pressure
- New Eccosorb MMI absorber for MM-waves (1mm thick)

- Calibration targets are crucial for accurate microwave radiometry.
- Temperature gradients are a common source for calibration errors (e.g. SSMI calibration anomalies).
- ► Low S11 is a key requirement for spectroscopic observations.
- Conical and wedged targets have better RF and thermal performance than standard pyramidal targets.
- Performance can be optimized with multilayer absorber designs. This requires detailed knowledge of the absorber's dielectric and magnetic material parameters.

- ALMA Calibration Targets
 European Southern Observatory, Munich
 Pavel Yagoubov, Ferdinand Patt
- Sentinel-3 MWR Ground Calibration Targets EADS CASA Espacio, Madrid Marc Bergadá, Raquel González
- Low Mass Calibration Load European Space Agency Peter de Maagt
- Thomas Keating Ltd., UK Target manufacture
- ABSL Enersys, UK Thermometry and thermal design