Diurnal variation of *O*₃ during the Polar day above Spitsbergen

Mathias Palm

Institute of Environmental Physics Universität Bremen

Bern, January 2013

Mathias Palm et.al.

NDACC MW Bern January 2013

Measurement geometry

Elev. 20°, Azi. 113°

- O₃ emission, 142.175 GHz
- Res. 60 kHz, Bandwith 900MHz
- Integration time, 1 hour
- $T_{\text{REC}} \approx 1200K$

Observation

Observation

Observation

10

Overview

- measurements at 37 km altitude
- clearly discernible diurnal cycle
- MLS data do not cover a full diurnal cycle

Overview

- measurements at 37 km altitude
- clearly discernible diurnal cycle
- MLS data do not cover a full diurnal cycle

Overview

- measurements at 37 km altitude
- clearly discernible diurnal cycle
- MLS data do not cover a full diurnal cycle
- O3 depletion in KASIMA model stronger than in measurements
- O3 depletion in KASIMA model weaker than in measurements
- modelled diurnal cycle smaller in spring

Chemistry of O_3 in the upper stratosphere I

$$J2: O_2 + h\nu(\lambda \le 242.4nm) \longrightarrow O(^{3}P) + O(^{3}P)$$
(1)

$$O(^{3}P) + O_{2} + M \longrightarrow O_{3} + M$$
 (2)

$$O(^{3}P) + O_{3} \longrightarrow 2O_{2}$$
 (3)

Ozone is photo-dissociated by

$$J3: O_3 + h\nu(\lambda \ge 320 \text{nm}) \rightarrow O_2({}^3\Sigma_g^-) + O({}^3P) \qquad (4)$$

$$J3A: O_3 + h\nu(\lambda \le 320 \text{nm}) \rightarrow O_2(^1\Delta_g) + O(^1D)$$
 (5)

- O_3 , $O(^3P)$ and $O(^1D)$ form Ox-family
- lifetime of Ox-family longer than its constituents
- During polar day is Ox chemically controlled

Chemistry of O_3 in the upper stratosphere II

Catalytic removal of Ox in the upper stratosphere:

$$NO + O_3 \longrightarrow NO_2 + O_2$$
 (6)

$$NO_2 + O(^{3}P) \longrightarrow NO + O_2$$
 (7)

NET :
$$O_3 + O(^3P) \longrightarrow 2O_2$$
 (8)

The main source of NO in the stratosphere is the reaction

$$N_2O + O(^1D) \longrightarrow 2 NO$$
 (9)

which also removes N₂O from the stratosphere. The reactions

$$\begin{split} \mathrm{N}_2\mathrm{O} + \mathrm{O}(^1\mathrm{D}) &\longrightarrow \mathrm{N}_2 + \mathrm{O}_2 \qquad (10)\\ \mathrm{N}_2\mathrm{O} + \mathrm{h}\nu(\lambda \leq 200\mathrm{nm}) &\longrightarrow \mathrm{O}(^1\mathrm{D}) + \mathrm{N}_2 \qquad (11) \end{split}$$

removes N₂O from the stratosphere and produces Ox

O₃ variation during polar day

- Variance in O₃ only partly covered
- O3 depletion in B3DCTM smaller

Diurnal variation of O₃-chemistry

- photolysis the natural candidate for the diurnal cycle
- diurnal variation of O₃ linear to the SZA (lagging 5h) behind:

$$x_{\mathrm{O}_3} = a * SZA_{t-5h} + b$$

·				
parameter increased	diurnal amplitude		influence on	
	[ppmv]	normalized	O3 VMR	
none	0.46	0.08	_	
Solar	0 79	0.15	decrease	
irradiation	0.70	0.10	40010400	
NO ₂	0.48	0.1	decrease	
NOx	0.48	0.1	decrease	
Clx	0.46	0.09	·	
H ₂ O	0.45	[°] 80.0		
J2	0.9	0.1		
J3	0.5	0.13		\sim
J3*	0.38	0.09 T		
J _{N2O}	0.46	0.1 ⁴		
Diurnal amplitude mea	asured an	d modele ° 4		
OZORAM	0.65	0.13		
B3DCTM	0.52	0.09		
KASIMA	0.43	0.07 🌼	:0003:0006:0009:0012:0015:0018:00	21:0000:00
			Time of 27th April 2010	

Mathias Palm et.al.

NDACC MW Bern January 2013

parameter increased	diurna	l amplitude	influence on				
	[ppmv]	normalized	O3 VMR				
none	0.46	0.08	-				
Solar	0.79	0.15	decrease				
irradiation		0110					
NO ₂	0.48	0.1	decrease				
NOx	0.48	0.1	decrease				
Clx	0.46	0.09	decrease				
H ₂ O	0.45	0.08	decrease				
J2	0.9	0.1	increase				
J3	0.5	0.13	decrease				
J3*	0.38	0.09	decrease				
J _{N2O}	0.46	0.1	increase				
Diurnal amplitude measured and modeled in April 2010							
OZORAM	0.65	0.13					
B3DCTM	0.52	0.09					
KASIMA	0.43	0.07					

·				
parameter increased	diurnal amplitude		influence on	
	[ppmv]	normalized	O3 VMR	
none	0.46	0.08	_	
Solar	0 79	0.15	decrease	
irradiation	0.70	0.10	40010400	
NO ₂	0.48	0.1	decrease	
NOx	0.48	0.1	decrease	
Clx	0.46	0.09	·	
H ₂ O	0.45	[°] 80.0		
J2	0.9	0.1		
J3	0.5	0.13		\sim
J3*	0.38	0.09 T		
J _{N2O}	0.46	0.1 ⁴		
Diurnal amplitude mea	asured an	d modele ° 4		
OZORAM	0.65	0.13		
B3DCTM	0.52	0.09		
KASIMA	0.43	0.07 🌼	:0003:0006:0009:0012:0015:0018:00	21:0000:00
			Time of 27th April 2010	

Mathias Palm et.al.

NDACC MW Bern January 2013

Summary

- ground based millimeterwave radiometry of O₃ suitable for short term observations
- O₃ strongly correlated to SZA wioth a time lag of 5 h.
- measured O₃ diurnal cycle higher in spring than modelled one and more variable throughout the year.
- O₃ depletion not well matched in both models
- possible reason wrong photolysis constants