Calibration of MIAWARA: Middle Atmospheric Water Vapour Radiometer

Beat Deuber, IAP University of Bern

April 3rd, 2002

Beat Deuber / IAP, University of Bern

Content

- 1. Introduction to MIAWARA
- 2. Calibration scheme
- 3. Validation of tipping curve calibration

MIAWARA: Middle Atmospheric Water Vapour Radiometer

Beat Deuber / IAP, University of Bern

Instrumentation

Radio-frequency range	21.735 – 22.735 GHz
Operational mode	Single sideband (SSB) 50 dB sideband suppression
Mirror	Plane mirror (gauss beam optimised shape)
Antenna	Corrugated horn (HPBW 6 deg)
T _{rec}	133 K SSB
Broadband spectral	Acousto-optical spectrometer
analysis	(channels: 1725, f: 1.6–2.6 GHz, <i>∆f_{FWHM}</i> : 1.2 MHz)
Narrowband spectral	Chirp transform spectrometer
analysis	(channels: 4200, f: 390–430 MHz, <i>∆f_{FWHM}</i> : 14 kHz)
H ₂ O profile retrieval	Altitude range: 25 - 80 kilometres
	Measurement time per profile: 1-4 days

Blockscheme

Beat Deuber / IAP, University of Bern

Calibration Scheme

Calibration Scheme (Detail)

Calibration Loads:

- Hot Load: ECCOSORB CV3 absorber at ambient temperature.
- Cold Load: Sky at an elevation angle of 60°. Calibrated with hourly tipping curves.
- **Reference Load:** Sky at 90^o elevation, Signal intensity adjusted with partly covering the beam with absorbing material (up to now: CV3).

Tipping Curve

- Tropospheric opacity τ is calculated from hourly tipping curves according to [Jannsen, 1993].
- Brightness temperature of sky as cold load is calculated using ground surface temperatures [Han and Westwater: 2001]:

$$T_{cold,sky} = T_0 e^{\left(\frac{-\tau}{\cos\theta}\right)} + T_{Trop} \left(1 - e^{\left(\frac{-\tau}{\cos\theta}\right)}\right)$$
(1)

$$T_{Trop} = c_1(f)\Theta_{ground} + c_0(f)$$
 (2)

 T_{Trop} mean tropospheric temperature [K] Θ_{ground} ambient temperature at ground [°C] c_0, c_1 linear regression coefficients

Balancing Calibration

• Balanced calibrated brightness temperature :

$$\Delta T_B = \frac{U_{line} - U_{ref}}{U_{hot} - U_{cold}} \left(T_{hot} - T_{cold,sky} \right)$$
(3)

Uspectrometer output [counts] T_{hot} physical temperature CV3 hot load (AD490) [K] $T_{cold,sky}$ brightness temperature of sky at 60° elevation [K]

- ΔT_B is independent of spectrometer offset
- Tropospheric correction $\Delta T_{B,tropcorr}$ achieved by method described by [Forkman et al. 2003]

Validation of Tipping Curve Calibration: Concept

- Use of receiver noise temperature T_{rec} as a validation standard.
- Comparison of simultaneously measured T_{rec} using $T_{cold,sky}$ and T_{cold,LN_2} :

$$T_{rec,sky} = \frac{T_{hot} - y_{sky} \cdot T_{cold,sky}}{y_{sky} - 1}$$
(4)

$$T_{rec,LN_2} = \frac{T_{hot} - y_{LN_2} \cdot T_{cold,LN_2}}{y_{LN_2} - 1}$$
(5)

$$y_{sky} = \frac{U_{hot} - U_{offset}}{U_{cold,sky} - U_{offset}}$$
(6)

$$y_{LN_2} = \frac{U_{hot} - U_{offset}}{U_{cold,LN_2} - U_{offset}}$$
(7)

• Is *T_{rec}* sensitive to 'errors' in *T_{cold,sky}*?

Validation of Tipping Curve Calibration: Sensitivity Simulation

Changes in T_{rec} as a function of differences in $T_{cold,sky}$ from 30 K and the *y*-factor

Validation of Tipping Curve Calibration: Results

- T_{rec} is highly sensitive to changes in $T_{cold,sky}$ and can be used as a validation standard for $T_{cold,sky}$ calculated from the tipping curve measurements.
- **MIAWARA:** differences of simentaneously measured $T_{rec,sky}$ and T_{rec,LN_2} are smaller than 0.6 % or 0.85 K.
- **Conculsion:** Our tipping curve calibration is of good quality and the sky may be uses as cold calibration load.
- Validation is repeated periodically: \approx 2-4 weeks.

Uncertainties Tippingcurve

Variable	Uncertainty s
T _{hot}	± 1 K
T _{Trop}	\pm 3.5 K [Han and Westwater, 2001]
Elevation angle θ	0.5 [°]
T_0	0.5 K
\rightarrow Tropospheric opacity s_{τ}	10 %
\rightarrow Cold sky temperature $s_{T_{cold,sky}}$	2.5 K / 8.5 %

Uncertainties Balancing Calibration

Variable	Uncertainty s using T we	Uncertainty s using T www
	using r cold,sky	using r cold, LN ₂
T _{hot}	\pm 1 K	±1K
T _{cold,sky}	\pm 2.5 K	
T _{cold,LN2}		\pm 1 K
ightarrow balanced brightness		
temperature $s_{\Delta T_B}$	pprox 1 %	pprox 0.2 %

Which Balancing Load Causes Minimized Baseline Effects?

'Horizontal Orientation'

'Vertical Orientation'

Beat Deuber / IAP, University of Bern

'Vertical Orientation: tilt 45 deg'

Beat Deuber / IAP, University of Bern

Conclusion

- At 22 GHz the sky may be used as cold calibration load.
- $T_{cold,sky}$ can be estimated from tipping curve calibration and the ground surface temperature.
- T_{rec} is suitable for tipping curve validation purposes.
- Balancing load has substential influence on baselines.
 For baseline issues, the material of the load is less critical than the orientation in the beam.